Multi-class identification of tonal contrasts in Chokri using supervised machine learning algorithms
Amalesh Gope (),
Anusuya Pal,
Sekholu Tetseo,
Tulika Gogoi,
Joanna J and
Dinkur Borah
Additional contact information
Amalesh Gope: Tezpur University
Anusuya Pal: The University of Tokyo
Sekholu Tetseo: Tezpur University
Tulika Gogoi: Tezpur University
Joanna J: Tezpur University
Dinkur Borah: Tezpur University
Palgrave Communications, 2024, vol. 11, issue 1, 1-13
Abstract:
Abstract This study examines and explores the effectiveness of various Machine Learning Algorithms (MLAs) in identifying intricate tonal contrasts in Chokri (ISO 639-3), an under-documented and endangered Tibeto-Burman language of the Sino-Tibetan language family spoken in Nagaland, India. Seven different supervised MLAs, viz., [Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB)], and one neural network (NN)-based algorithms [Artificial Neural Network (ANN)] are implemented to explore five-way tonal contrasts in Chokri. Acoustic correlates of tonal contrasts, encompassing fundamental frequency fluctuations, viz., f0 height and f0 direction, are examined. Contrary to the prevailing notion of NN supremacy, this study underscores the impressive accuracy achieved by the RF. Additionally, it reveals that combining f0 height and directionality enhances tonal contrast recognition for female speakers, while f0 directionality alone suffices for male speakers. The findings demonstrate MLAs’ potential to attain accuracy rates of 84–87% for females and 95–97% for males, showcasing their applicability in deciphering the intricate tonal systems of Chokri. The proposed methodology can be extended to predict multi-class problems in diverse fields such as image processing, speech classification, medical diagnosis, computer vision, and social network analysis.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1057/s41599-024-03113-2 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03113-2
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-024-03113-2
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().