Performance and biases of Large Language Models in public opinion simulation
Yao Qu and
Jue Wang ()
Additional contact information
Yao Qu: Nanyang Technological University
Jue Wang: Nanyang Technological University
Palgrave Communications, 2024, vol. 11, issue 1, 1-13
Abstract:
Abstract The rise of Large Language Models (LLMs) like ChatGPT marks a pivotal advancement in artificial intelligence, reshaping the landscape of data analysis and processing. By simulating public opinion, ChatGPT shows promise in facilitating public policy development. However, challenges persist regarding its worldwide applicability and bias across demographics and themes. Our research employs socio-demographic data from the World Values Survey to evaluate ChatGPT’s performance in diverse contexts. Findings indicate significant performance disparities, especially when comparing countries. Models perform better in Western, English-speaking, and developed nations, notably the United States, in comparison to others. Disparities also manifest across demographic groups, showing biases related to gender, ethnicity, age, education, and social class. The study further uncovers thematic biases in political and environmental simulations. These results highlight the need to enhance LLMs’ representativeness and address biases, ensuring their equitable and effective integration into public opinion research alongside conventional methodologies.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1057/s41599-024-03609-x Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03609-x
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-024-03609-x
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().