Trust in AI: progress, challenges, and future directions
Saleh Afroogh (),
Ali Akbari,
Emmie Malone,
Mohammadali Kargar and
Hananeh Alambeigi
Additional contact information
Saleh Afroogh: The University of Texas at Austin
Ali Akbari: Stanford University School of Medicine
Emmie Malone: Lone Star College in Houston
Mohammadali Kargar: Texas A&M University
Hananeh Alambeigi: Texas A&M University
Palgrave Communications, 2024, vol. 11, issue 1, 1-30
Abstract:
Abstract The increasing use of artificial intelligence (AI) systems in our daily lives through various applications, services, and products highlights the significance of trust and distrust in AI from a user perspective. AI-driven systems have significantly diffused into various aspects of our lives, serving as beneficial “tools” used by human agents. These systems are also evolving to act as co-assistants or semi-agents in specific domains, potentially influencing human thought, decision-making, and agency. Trust and distrust in AI serve as regulators and could significantly control the level of this diffusion, as trust can increase, and distrust may reduce the rate of adoption of AI. Recently, a variety of studies focused on the different dimensions of trust and distrust in AI and its relevant considerations. In this systematic literature review, after conceptualizing trust in the current AI literature, we will investigate trust in different types of human–machine interaction and its impact on technology acceptance in different domains. Additionally, we propose a taxonomy of technical (i.e., safety, accuracy, robustness) and non-technical axiological (i.e., ethical, legal, and mixed) trustworthiness metrics, along with some trustworthy measurements. Moreover, we examine major trust-breakers in AI (e.g., autonomy and dignity threats) and trustmakers; and propose some future directions and probable solutions for the transition to a trustworthy AI.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1057/s41599-024-04044-8 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-04044-8
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-024-04044-8
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().