Machine learning methods for “wicked” problems: exploring the complex drivers of modern slavery
Rosa Lavelle-Hill (),
Gavin Smith,
Anjali Mazumder,
Todd Landman and
James Goulding
Additional contact information
Rosa Lavelle-Hill: The Alan Turing Institute
Gavin Smith: N/LAB, University of Nottingham
Anjali Mazumder: The Alan Turing Institute
Todd Landman: Rights Lab, University of Nottingham
James Goulding: N/LAB, University of Nottingham
Palgrave Communications, 2021, vol. 8, issue 1, 1-11
Abstract:
Abstract Forty million people are estimated to be in some form of modern slavery across the globe. Understanding the factors that make any particular individual or geographical region vulnerable to such abuse is essential for the development of effective interventions and policy. Efforts to isolate and assess the importance of individual drivers statistically are impeded by two key challenges: data scarcity and high dimensionality, typical of many “wicked problems”. The hidden nature of modern slavery restricts available data points; and the large number of candidate variables that are potentially predictive of slavery inflate the feature space exponentially. The result is a “small n, large p” setting, where overfitting and significant inter-correlation of explanatory variables can render more traditional statistical approaches problematic. Recent advances in non-parametric computational methods, however, offer scope to overcome such challenges and better capture the complex nature of modern slavery. We present an approach that combines non-linear machine-learning models and strict cross-validation methods with novel variable importance techniques, emphasising the importance of stability of model explanations via a Rashomon-set analysis. This approach is used to model the prevalence of slavery in 48 countries, with results bringing to light the importance of new predictive factors—such as a country’s capacity to protect the physical security of women, which has been previously under-emphasised in quantitative models. Further analyses uncover that women are particularly vulnerable to exploitation in areas where there is poor access to resources. Our model was then leveraged to produce new out-of-sample estimates of slavery prevalence for countries where no survey data currently exists.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1057/s41599-021-00938-z Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00938-z
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-021-00938-z
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().