A lexicon-based approach to examine depression detection in social media: the case of Twitter and university community
Junyeop Cha,
Seoyun Kim and
Eunil Park ()
Additional contact information
Junyeop Cha: Sungkyunkwan University
Seoyun Kim: Sungkyunkwan University
Eunil Park: Sungkyunkwan University
Palgrave Communications, 2022, vol. 9, issue 1, 1-10
Abstract:
Abstract Globally, the number of people who suffer from depression is consistently increasing. Because both detecting and addressing the early stage of depression is one of the strongest factors for effective treatment, a number of scholars have attempted to examine how to detect and address early-stage depression. Recent studies have been focusing on the use of social media for depression detection where users express their thoughts and emotions freely. With this trend, we examine two-step approaches for early-stage depression detection. First, we propose a depression post-classification model using multiple languages Twitter datasets (Korean, English, and Japanese) to improve the applicability of the proposed model. Moreover, we built a depression lexicon for each language, which mental health experts verified. Then, we applied the proposed model to a more specific user group dataset, a community of university students (Everytime), to examine whether the model can be employed to address depression posts in more specific user groups. The classification results present that the proposed model and approach can effectively detect depression posts of a general user group (Twitter), as well as specific user group datasets. Moreover, the implemented models and datasets are publicly available.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1057/s41599-022-01313-2 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01313-2
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-022-01313-2
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().