EconPapers    
Economics at your fingertips  
 

Analyzing the past, improving the future: a multiscale opinion tracking model for optimizing business performance

Salman Sigari () and Amir. H. Gandomi ()
Additional contact information
Salman Sigari: Bloomberg L.P
Amir. H. Gandomi: University of Technology Sydney

Palgrave Communications, 2022, vol. 9, issue 1, 1-10

Abstract: Abstract The complexity of business decision-making has increased over the years. It is essential for managers to gain a confident understanding of their business environments in order to make successful decisions. With the growth of opinion-rich web resources such as social media, discussion forums, review sites, news corpora, and blogs available on the internet, product and service reviews have become an essential source of information. In a data-driven world, they will improve services and operational insights to achieve real business benefits and help enterprises remain competitive. Despite the prevalence of textual data, few studies have demonstrated the effectiveness of real-time text mining and reporting tools in firms and organizations. To address this aspect of decision-making, we have developed and evaluated an unsupervised learning system to automatically extract and classify topics and their emotion score in text streams. Data were collected from commercial websites, open-access databases, and social networks to train the model. In the experiment, the polarity score was quantified at four different levels: word, sentence, paragraph, and the entire text using Latent Dirichlet Allocation (LDA). Using subjective data mining, we demonstrate how to extract, summarize, and track various aspects of information from the Web and help traditional information retrieval (IR) systems to capture more information. An opinion tracking system presented by our model extracts subjective information, classifies them, and tracks opinions by utilizing location, time, and reviewers’ positions. Using the online-offline data collection technique, we can update the library topic in real-time to provide users with a market opinion tracker. For marketing or economic research, this approach may be useful. In the experiment, the new model is applied to a case study to demonstrate how the business process improves.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1057/s41599-022-01325-y Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01325-y

Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about

DOI: 10.1057/s41599-022-01325-y

Access Statistics for this article

More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01325-y