lndicadores líderes, redes neuronales y predicción de corto plazo
Javier Kapsoli Salinas () and
Brigitt Bencich Aguilar ()
Additional contact information
Javier Kapsoli Salinas: Pontificia Universidad Católica del Perú - Departamento de economía
Brigitt Bencich Aguilar: Consultora de la Dirección General de Asuntos Económicos, Ministerio de Economía y Finanzas
Revista Economía, 2004, issue 53-54, 213-254
Abstract:
This paper shows a procedure to constmct a short run predictor for the GDP. We use the Baxter & King filter to decompose the monthly GDP on its three components: seasonal, business cycle and iong-run trend. Furthermore we estimate and forecast the business cycle using a set of leading economic variables. We propose that the complicated relationships among this variables and the business cycle are well captured by a non linear artificial neural network model. The other components are estimated using standard econometric techniques. Finally, the three components are added to obtain an indicator for the future behavior of the GDP. The prediction shows an aceptable leve1 of reliability, so the index can be used to take decisions in the private or public sector. The main advantage of the index is its faster availability relative to the oficial statistics.
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
http://revistas.pucp.edu.pe/index.php/economia/article/view/867/828 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pcp:pucrev:y:2005:i:53-54:p:213-254
Access Statistics for this article
Revista Economía is currently edited by Luis García
More articles in Revista Economía from Fondo Editorial - Pontificia Universidad Católica del Perú Av. Universitaria 1801, San Miguel, Lima, Perú. Contact information at EDIRC.
Bibliographic data for series maintained by ().