Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort
Liane Schmidt,
Mael Lebreton,
Marie-Laure Cléry-Melin,
Jean Daunizeau and
Mathias Pessiglione
PLOS Biology, 2012, vol. 10, issue 2, 1-13
Abstract:
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia. Author Summary: Incentive motivation refers to the process in the brain by which we translate the expectation of a potential reward into the effort required to do an action, as for instance when the expected paycheck brings the employee to work. Different types of effort can be implemented in everyday life, some being more cognitive, like paying attention, and others more motor-involved, like lifting weights. Reward, cognitive, and motor representations are known to rely on distinct regions of the frontal cortex and basal ganglia. However, how expected rewards motivate these different types of efforts remains poorly understood. Here, we addressed this question by developing a functional neuroimaging approach where we independently varied a monetary reward as well as the cognitive and motor demand of the task. Our results suggest that the expectation of a reward is encoded in the ventral striatum, which can then drive either the motor or cognitive part of the dorsal striatum, depending on the task, in order to boost behavioral performance. We conclude that intra-striatal effective connectivity may explain how both motor and cognitive efforts can be driven by a single motivational module.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001266 (text/html)
https://journals.plos.org/plosbiology/article/file ... 01266&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:1001266
DOI: 10.1371/journal.pbio.1001266
Access Statistics for this article
More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().