EconPapers    
Economics at your fingertips  
 

BOLD Response Selective to Flow-Motion in Very Young Infants

Laura Biagi, Sofia Allegra Crespi, Michela Tosetti and Maria Concetta Morrone

PLOS Biology, 2015, vol. 13, issue 9, 1-22

Abstract: In adults, motion perception is mediated by an extensive network of occipital, parietal, temporal, and insular cortical areas. Little is known about the neural substrate of visual motion in infants, although behavioural studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate that the major cortical areas serving motion processing in adults are operative by 7 wk of age. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices. Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections. In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.Although 7-wk-old infants do not perceive motion with fine sensitivity, this study shows that their brains have a well-established network of associative cortical areas selective to visual flow-motion.Author Summary: While it is known that the visual brain is immature at birth, there is little firm information about the developmental timeline of the visual system in humans. Despite this, it is commonly assumed that the cortex matures slowly, with primary visual areas developing first, followed by higher associative regions. Here we use fMRI in very young infants to show that this isn’t the case. Adults are highly sensitive to moving objects, and to the spurious flow projected on their retinas while they move in the environment. Flow perception is mediated by an extensive network of areas involving primary and associative visual areas, but also vestibular associative cortices that mediate the perception of body motion (vection). Our data demonstrate that this complex network of higher associative areas is established and well developed by 7 wk of age, including the vestibular associative cortex. Interestingly, the maturation of the primary visual cortex lags behind the higher associative cortex; this suggests the existence of independent cortical inputs to the primary and the associative cortex at this stage of development, explaining why infants do not yet perceive motion with the same sensitivity as adults.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002260 (text/html)
https://journals.plos.org/plosbiology/article/file ... 02260&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:1002260

DOI: 10.1371/journal.pbio.1002260

Access Statistics for this article

More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pbio00:1002260