What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control
Pierre Morel,
Philipp Ulbrich and
Alexander Gail
PLOS Biology, 2017, vol. 15, issue 6, 1-23
Abstract:
When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves). Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles.Author summary: Economic choice in humans and animals can be understood as a weighing of benefits (e.g., reward) against costs (e.g., effort, delay, risk), leading to a preference for the behavioral option with highest expected utility. The costs of the action associated with a choice can thereby affect its utility: for equivalent benefits, an action that requires less physical effort will be preferred to a more effortful one. Here, we characterized how human subjects assess physical effort when choosing between arm movements. We show that the effort cost of a movement increases with its duration and with the square of the force it is performed against but not with the distance covered. Therefore, the subjective cost that determines decisions does not reflect the objective energetic cost of the actions—i.e., the corresponding metabolic expenditure. Instead, the subjective cost has commonalities with the cost that our central nervous system is believed to minimize for controlling the motor execution of actions. Our findings thus argue in favor of action selection and action control sharing common underlying optimization principles.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2001323 (text/html)
https://journals.plos.org/plosbiology/article/file ... 01323&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:2001323
DOI: 10.1371/journal.pbio.2001323
Access Statistics for this article
More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().