Integration of individual and social information for decision-making in groups of different sizes
Seongmin A Park,
Sidney Goïame,
David A O'Connor and
Jean-Claude Dreher
PLOS Biology, 2017, vol. 15, issue 6, 1-28
Abstract:
When making judgments in a group, individuals often revise their initial beliefs about the best judgment to make given what others believe. Despite the ubiquity of this phenomenon, we know little about how the brain updates beliefs when integrating personal judgments (individual information) with those of others (social information). Here, we investigated the neurocomputational mechanisms of how we adapt our judgments to those made by groups of different sizes, in the context of jury decisions for a criminal. By testing different theoretical models, we showed that a social Bayesian inference model captured changes in judgments better than 2 other models. Our results showed that participants updated their beliefs by appropriately weighting individual and social sources of information according to their respective credibility. When investigating 2 fundamental computations of Bayesian inference, belief updates and credibility estimates of social information, we found that the dorsal anterior cingulate cortex (dACC) computed the level of belief updates, while the bilateral frontopolar cortex (FPC) was more engaged in individuals who assigned a greater credibility to the judgments of a larger group. Moreover, increased functional connectivity between these 2 brain regions reflected a greater influence of group size on the relative credibility of social information. These results provide a mechanistic understanding of the computational roles of the FPC-dACC network in steering judgment adaptation to a group’s opinion. Taken together, these findings provide a computational account of how the human brain integrates individual and social information for decision-making in groups.Author summary: In collective decisions, both the size of groups and the confidence that each member has in their own judgment determine how much a given individual will adapt to the judgment of the group. Here, we show that judgment adaptation during collective decisions—a fundamental brain mechanism needed for fluid functioning of social organizations—can be accounted for by Bayesian inference computations. At the time of judgment adaptation, individuals trade off the credibility inferred from their own confidence levels against the credibility of social information. The dorsal anterior cingulate cortex (dACC) represented belief updates, while the lateral frontopolar cortex (FPC) monitored the changes in credibility assigned to social information. These results provide a neurocomputational understanding of how individuals benefit both from the wisdom of larger groups and from their own confidence.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2001958 (text/html)
https://journals.plos.org/plosbiology/article/file ... 01958&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:2001958
DOI: 10.1371/journal.pbio.2001958
Access Statistics for this article
More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().