EconPapers    
Economics at your fingertips  
 

Enabling precision medicine via standard communication of HTS provenance, analysis, and results

Gil Alterovitz, Dennis Dean, Carole Goble, Michael R Crusoe, Stian Soiland-Reyes, Amanda Bell, Anais Hayes, Anita Suresh, Anjan Purkayastha, Charles H King, Dan Taylor, Elaine Johanson, Elaine E Thompson, Eric Donaldson, Hiroki Morizono, Hsinyi Tsang, Jeet K Vora, Jeremy Goecks, Jianchao Yao, Jonas S Almeida, Jonathon Keeney, KanakaDurga Addepalli, Konstantinos Krampis, Krista M Smith, Lydia Guo, Mark Walderhaug, Marco Schito, Matthew Ezewudo, Nuria Guimera, Paul Walsh, Robel Kahsay, Srikanth Gottipati, Timothy C Rodwell, Toby Bloom, Yuching Lai, Vahan Simonyan and Raja Mazumder

PLOS Biology, 2018, vol. 16, issue 12, 1-14

Abstract: A personalized approach based on a patient's or pathogen’s unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the “Open-Stand.org principles for collaborative open standards development.” With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews.This Community Page article presents a communication standard for the provenance of high-throughput sequencing data; a BioCompute Object (BCO) can serve as a history of what was computed, be used as part of a validation process, or provide clarity and transparency of an experimental process to collaborators.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000099 (text/html)
https://journals.plos.org/plosbiology/article/file ... 00099&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:3000099

DOI: 10.1371/journal.pbio.3000099

Access Statistics for this article

More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pbio00:3000099