EconPapers    
Economics at your fingertips  
 

A neural ensemble correlation code for sound category identification

Mina Sadeghi, Xiu Zhai, Ian H Stevenson and Monty A Escabí

PLOS Biology, 2019, vol. 17, issue 10, 1-41

Abstract: Humans and other animals effortlessly identify natural sounds and categorize them into behaviorally relevant categories. Yet, the acoustic features and neural transformations that enable sound recognition and the formation of perceptual categories are largely unknown. Here, using multichannel neural recordings in the auditory midbrain of unanesthetized female rabbits, we first demonstrate that neural ensemble activity in the auditory midbrain displays highly structured correlations that vary with distinct natural sound stimuli. These stimulus-driven correlations can be used to accurately identify individual sounds using single-response trials, even when the sounds do not differ in their spectral content. Combining neural recordings and an auditory model, we then show how correlations between frequency-organized auditory channels can contribute to discrimination of not just individual sounds but sound categories. For both the model and neural data, spectral and temporal correlations achieved similar categorization performance and appear to contribute equally. Moreover, both the neural and model classifiers achieve their best task performance when they accumulate evidence over a time frame of approximately 1–2 seconds, mirroring human perceptual trends. These results together suggest that time-frequency correlations in sounds may be reflected in the correlations between auditory midbrain ensembles and that these correlations may play an important role in the identification and categorization of natural sounds.Animals and humans can readily categorize sounds into behaviorally relevant categories, but the neural mechanisms responsible for category formation are unknown. Neural recordings and modelling reveal that coordinated firing in auditory midbrain circuits provides a robust neural signal for decoding the identity of natural sounds and categories.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000449 (text/html)
https://journals.plos.org/plosbiology/article/file ... 00449&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:3000449

DOI: 10.1371/journal.pbio.3000449

Access Statistics for this article

More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pbio00:3000449