Stochastic models allow improved inference of microbiome interactions from time series data
Román Zapién-Campos,
Florence Bansept and
Arne Traulsen
PLOS Biology, 2024, vol. 22, issue 11, 1-25
Abstract:
How can we figure out how the different microbes interact within microbiomes? To combine theoretical models and experimental data, we often fit a deterministic model for the mean dynamics of a system to averaged data. However, in the averaging procedure a lot of information from the data is lost—and a deterministic model may be a poor representation of a stochastic reality. Here, we develop an inference method for microbiomes based on the idea that both the experiment and the model are stochastic. Starting from a stochastic model, we derive dynamical equations not only for the average, but also for higher statistical moments of the microbial abundances. We use these equations to infer distributions of the interaction parameters that best describe the biological experimental data—improving identifiability and precision. The inferred distributions allow us to make predictions but also to distinguish between fairly certain parameters and those for which the available experimental data does not give sufficient information. Compared to related approaches, we derive expressions that also work for the relative abundance of microbes, enabling us to use conventional metagenome data, and account for cases where not a single host, but only replicate hosts, can be tracked over time.Inferring parameters for mathematical modeling of microbiome dynamics is crucial but challenging. This study presents a method that uses statistical information from time series replicates to infer microbial interaction parameters and their uncertainty, thereby improving predictions and model precision.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002913 (text/html)
https://journals.plos.org/plosbiology/article/file ... 02913&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:3002913
DOI: 10.1371/journal.pbio.3002913
Access Statistics for this article
More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().