Noise-Induced Min Phenotypes in E. coli
David Fange and
Johan Elf
PLOS Computational Biology, 2006, vol. 2, issue 6, 1-12
Abstract:
The spatiotemporal oscillations of the Escherichia coli proteins MinD and MinE direct cell division to the region between the chromosomes. Several quantitative models of the Min system have been suggested before, but no one of them accounts for the behavior of all documented mutant phenotypes. We analyzed the stochastic reaction-diffusion kinetics of the Min proteins for several E. coli mutants and compared the results to the corresponding deterministic mean-field description. We found that wild-type (wt) and filamentous (ftsZ −) cells are well characterized by the mean-field model, but that a stochastic model is necessary to account for several of the characteristics of the spherical (rodA−) and phospathedylethanolamide-deficient (PE−) phenotypes. For spherical cells, the mean-field model is bistable, and the system can get trapped in a non-oscillatory state. However, when the intrinsic noise is considered, only the experimentally observed oscillatory behavior remains. The stochastic model also reproduces the change in oscillation directions observed in the spherical phenotype and the occasional gliding of the MinD region along the inner membrane. For the PE− mutant, the stochastic model explains the appearance of randomly localized and dense MinD clusters as a nucleation phenomenon, in which the stochastic kinetics at low copy number causes local discharges of the high MinDATP to MinDADP potential. We find that a simple five-reaction model of the Min system can explain all documented Min phenotypes, if stochastic kinetics and three-dimensional diffusion are accounted for. Our results emphasize that local copy number fluctuation may result in phenotypic differences although the total number of molecules of the relevant species is high.Synopsis: Many molecules inside a living cell do not have time to diffuse through the whole cell in-between reactions. Furthermore, the chemical reactions are random and discrete events. In this study, the authors study an example in which these aspects of intracellular chemistry need to be considered when we try to understand how a biological system works.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020080 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 20080&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:0020080
DOI: 10.1371/journal.pcbi.0020080
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().