EconPapers    
Economics at your fingertips  
 

Functional Impact of Missense Variants in BRCA1 Predicted by Supervised Learning

Rachel Karchin, Alvaro N A Monteiro, Sean V Tavtigian, Marcelo A Carvalho and Andrej Sali

PLOS Computational Biology, 2007, vol. 3, issue 2, 1-14

Abstract: Many individuals tested for inherited cancer susceptibility at the BRCA1 gene locus are discovered to have variants of unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1 protein. They can be biochemically assayed, but such evaluations are time-consuming and labor-intensive. Computational methods that classify and suggest explanations for UCV impact on protein function can complement functional tests. Here we describe a supervised learning approach to classification of BRCA1 UCVs. Using a novel combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1 C-terminal (BRCT) domain UCVs biochemically assayed to measure transactivation function and to blindly classify 54 documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than 94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied to prioritize the growing number of potential causative loci and variants found by large-scale disease association studies.: A significant number of breast and ovarian cancers are due to inherited mutations in the BRCA1 and BRCA2 genes. Many women who receive genetic testing for these mutations are found to have variants of the genes that result in changed amino acids in the BRCA1 or BRCA2 proteins. The effect of these variants on cancer risk is not well-understood, posing a problem for patients and their health providers. We describe computational biology methods that predict and analyze the impact of 36 BRCA1 variants on protein function. The predictions are validated by biochemical assays of BRCA1 in yeast and mammalian cell cultures. The speed and accuracy of the computational methods is well-suited to rapid evaluation of large numbers of variants in genes that predispose to inherited diseases.

Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030026 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 30026&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:0030026

DOI: 10.1371/journal.pcbi.0030026

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:0030026