Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development
Jasmin Fisher,
Nir Piterman,
Alex Hajnal and
Thomas A Henzinger
PLOS Computational Biology, 2007, vol. 3, issue 5, 1-12
Abstract:
Caenorhabditis elegans vulval development provides an important paradigm for studying the process of cell fate determination and pattern formation during animal development. Although many genes controlling vulval cell fate specification have been identified, how they orchestrate themselves to generate a robust and invariant pattern of cell fates is not yet completely understood. Here, we have developed a dynamic computational model incorporating the current mechanistic understanding of gene interactions during this patterning process. A key feature of our model is the inclusion of multiple modes of crosstalk between the epidermal growth factor receptor (EGFR) and LIN-12/Notch signaling pathways, which together determine the fates of the six vulval precursor cells (VPCs). Computational analysis, using the model-checking technique, provides new biological insights into the regulatory network governing VPC fate specification and predicts novel negative feedback loops. In addition, our analysis shows that most mutations affecting vulval development lead to stable fate patterns in spite of variations in synchronicity between VPCs. Computational searches for the basis of this robustness show that a sequential activation of the EGFR-mediated inductive signaling and LIN-12 / Notch-mediated lateral signaling pathways is key to achieve a stable cell fate pattern. We demonstrate experimentally a time-delay between the activation of the inductive and lateral signaling pathways in wild-type animals and the loss of sequential signaling in mutants showing unstable fate patterns; thus, validating two key predictions provided by our modeling work. The insights gained by our modeling study further substantiate the usefulness of executing and analyzing mechanistic models to investigate complex biological behaviors.: Systems biology aims to gain a system-level understanding of living systems. To achieve such an understanding, we need to establish the methodologies and techniques to understand biological systems in their full complexity. One such attempt is to use methods designed for the construction and analysis of complex computerized systems to model biological systems. Describing mechanistic models in biology in a dynamic and executable language offers great advantages for representing time and parallelism, which are important features of biological behavior. In addition, automatic analysis methods can be used to ensure the consistency of computational models with biological data on which they are based. We have developed a dynamic computational model describing the current mechanistic understanding of cell fate determination during C. elegans vulval development, which provides an important paradigm for studying animal development. Our model is realistic, reproduces up-to-date experimental observations, allows in silico experimentation, and is analyzable by automatic tools. Analysis of our model provides new insights into the temporal aspects of the cell fate patterning process and predicts new modes of interaction between the signaling pathways involved. These biological insights, which were also validated experimentally, further substantiate the usefulness of dynamic computational models to investigate complex biological behaviors.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030092 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 30092&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:0030092
DOI: 10.1371/journal.pcbi.0030092
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().