Automated Protein Subfamily Identification and Classification
Duncan P Brown,
Nandini Krishnamurthy and
Kimmen Sjölander
PLOS Computational Biology, 2007, vol. 3, issue 8, 1-13
Abstract:
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.: Predicting the function of a gene or protein (gene product) from its primary sequence is a major focus of many bioinformatics methods. In this paper, the authors present a three-stage computational pipeline for gene functional annotation in an evolutionary framework to reduce the systematic errors associated with the standard protocol (annotation transfer from predicted homologs). In the first stage, a functional hierarchy is estimated for each protein family and subfamilies are identified. In the second stage, hidden Markov models (HMMs) (a type of statistical model) are constructed for each subfamily to model both the family-defining and subfamily-specific signatures. In the third stage, subfamily HMMs are used to assign novel sequences to functional subtypes. Extensive experimental validation of these methods shows that predicted subfamilies correspond closely to functional subtypes identified by experts and to conserved clades in phylogenetic trees; that subfamily HMMs increase the separation between homologs and non-homologs in sequence database discrimination tests relative to the use of a single HMM for the family; and that specificity of classification of novel sequences to subfamilies using subfamily HMMs is near perfect (1.5% error rate when sequences are assigned to the top-scoring subfamily, and
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030160 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 30160&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:0030160
DOI: 10.1371/journal.pcbi.0030160
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().