Bistability and Oscillations in the Huang-Ferrell Model of MAPK Signaling
Liang Qiao,
Robert B Nachbar,
Ioannis G Kevrekidis and
Stanislav Y Shvartsman
PLOS Computational Biology, 2007, vol. 3, issue 9, 1-8
Abstract:
Physicochemical models of signaling pathways are characterized by high levels of structural and parametric uncertainty, reflecting both incomplete knowledge about signal transduction and the intrinsic variability of cellular processes. As a result, these models try to predict the dynamics of systems with tens or even hundreds of free parameters. At this level of uncertainty, model analysis should emphasize statistics of systems-level properties, rather than the detailed structure of solutions or boundaries separating different dynamic regimes. Based on the combination of random parameter search and continuation algorithms, we developed a methodology for the statistical analysis of mechanistic signaling models. In applying it to the well-studied MAPK cascade model, we discovered a large region of oscillations and explained their emergence from single-stage bistability. The surprising abundance of strongly nonlinear (oscillatory and bistable) input/output maps revealed by our analysis may be one of the reasons why the MAPK cascade in vivo is embedded in more complex regulatory structures. We argue that this type of analysis should accompany nonlinear multiparameter studies of stationary as well as transient features in network dynamics.: Molecular studies of cell communication systems lead to models with multiple free parameters. Analysis of dynamical behavior of these models presents considerable challenge. We have developed a computational approach for the efficient exploration of dynamic behavior in such models and applied this method to the model of the Mitogen Activated Protein Kinase cascade, a signaling network conserved in all eukaryotes. Previous analysis of this model suggested that it works as a reversible switch. We have shown that it can also function as an irreversible switch and as a clock.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030184 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 30184&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:0030184
DOI: 10.1371/journal.pcbi.0030184
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().