A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval
Naomi Habib,
Tommy Kaplan,
Hanah Margalit and
Nir Friedman
PLOS Computational Biology, 2008, vol. 4, issue 2, 1-16
Abstract:
Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.Author Summary: Regulation of gene expression plays a central role in the activity of living cells and in their response to internal (e.g., cell division) or external (e.g., stress) stimuli. Key players in determining gene-specific regulation are transcription factors that bind sequence-specific sites on the DNA, modulating the expression of nearby genes. To understand the regulatory program of the cell, we need to identify these transcription factors, when they act, and on which genes. Transcription regulatory maps can be assembled by computational analysis of experimental data, by discovering the DNA recognition sequences (motifs) of transcription factors and their occurrences along the genome. Such an analysis usually results in a large number of overlapping motifs. To reconstruct regulatory maps, it is crucial to combine similar motifs and to relate them to transcription factors. To this end we developed an accurate fully-automated method, termed BLiC, based upon an improved similarity measure for comparing DNA motifs. By applying it to genome-wide data in yeast, we identified the DNA motifs of transcription factors and their putative target genes. Finally, we analyze motifs of transcription factor that alter their target genes under different conditions, and show how cells adjust their regulatory program in response to environmental changes.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000010 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00010&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000010
DOI: 10.1371/journal.pcbi.1000010
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).