EconPapers    
Economics at your fingertips  
 

Investigations of Oligonucleotide Usage Variance Within and Between Prokaryotes

Jon Bohlin, Eystein Skjerve and David W Ussery

PLOS Computational Biology, 2008, vol. 4, issue 4, 1-9

Abstract: Oligonucleotide usage in archaeal and bacterial genomes can be linked to a number of properties, including codon usage (trinucleotides), DNA base-stacking energy (dinucleotides), and DNA structural conformation (di- to tetranucleotides). We wanted to assess the statistical information potential of different DNA ‘word-sizes’ and explore how oligonucleotide frequencies differ in coding and non-coding regions. In addition, we used oligonucleotide frequencies to investigate DNA composition and how DNA sequence patterns change within and between prokaryotic organisms. Among the results found was that prokaryotic chromosomes can be described by hexanucleotide frequencies, suggesting that prokaryotic DNA is predominantly short range correlated, i.e., information in prokaryotic genomes is encoded in short oligonucleotides. Oligonucleotide usage varied more within AT-rich and host-associated genomes than in GC-rich and free-living genomes, and this variation was mainly located in non-coding regions. Bias (selectional pressure) in tetranucleotide usage correlated with GC content, and coding regions were more biased than non-coding regions. Non-coding regions were also found to be approximately 5.5% more AT-rich than coding regions, on average, in the 402 chromosomes examined. Pronounced DNA compositional differences were found both within and between AT-rich and GC-rich genomes. GC-rich genomes were more similar and biased in terms of tetranucleotide usage in non-coding regions than AT-rich genomes. The differences found between AT-rich and GC-rich genomes may possibly be attributed to lifestyle, since tetranucleotide usage within host-associated bacteria was, on average, more dissimilar and less biased than free-living archaea and bacteria.Author Summary: There are potentially many factors responsible for how archaeal and bacterial genomes are composed. Recent advances in DNA sequencing have made it possible to use computational and statistical methods to examine the interplay between evolution and genomic composition. We wished to see whether particular properties could be extracted that would provide clues on how prokaryotic DNA is composed. For instance, we wondered whether or not protein coding regions carried a greater information potential than non-coding regions, if there is a link between genome size and GC content, whether GC content is different in coding and non-coding regions, and possible associations between DNA composition and environment. Our results indicated that genomic nucleotide frequencies are a determinant of many DNA compositional properties, but also that other influences are at work. For instance, bacteria are known to frequently exchange DNA with the environment and other organisms. Acquired DNA can therefore have different compositional properties than host DNA, and since pathogenicity and antibiotic resistance in bacteria is often associated with foreign DNA, advancing the knowledge of DNA composition is of great importance.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000057 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00057&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000057

DOI: 10.1371/journal.pcbi.1000057

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000057