EconPapers    
Economics at your fingertips  
 

Transient Cognitive Dynamics, Metastability, and Decision Making

Mikhail I Rabinovich, Ramón Huerta, Pablo Varona and Valentin S Afraimovich

PLOS Computational Biology, 2008, vol. 4, issue 5, 1-9

Abstract: The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.Author Summary: The modeling of the temporal structure of cognitive processes is a key step for understanding cognition. Cognitive functions such as sequential learning, short-term memory, and decision making in a changing environment cannot be understood using only the traditional view based on classical concepts of nonlinear dynamics, which describe static or rhythmic brain activity. The execution of many cognitive functions is a transient dynamical process. Any dynamical mechanism underlying cognitive processes has to be reproducible from experiment to experiment in similar environmental conditions and, at the same time, it has to be sensitive to changing internal and external information. We propose here a new dynamical object that can represent robust and reproducible transient brain dynamics. We also propose a new class of models for the analysis of transient dynamics that can be applied for sequential decision making.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000072 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00072&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000072

DOI: 10.1371/journal.pcbi.1000072

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1000072