EconPapers    
Economics at your fingertips  
 

Context-Specific Metabolic Networks Are Consistent with Experiments

Scott A Becker and Bernhard O Palsson

PLOS Computational Biology, 2008, vol. 4, issue 5, 1-10

Abstract: Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are “genome-scale” and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME) to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.Author Summary: Systems biology aims to characterize cells and organisms as systems through the careful curation of all components. Large models that account for all known metabolism in microorganisms have been created by our group and by others around the world. Furthermore, models are available for human cells. These models represent all possible biochemical reactions in a cell, but cells choose which subset of reactions to use to suit their immediate purposes. We have developed a method to combine widely available gene expression data with presupposed cellular functions to predict the subset of reactions that a cell uses under particular conditions. We quantify the consistency of subsets of reactions with existing biological knowledge to demonstrate that the method produces biologically realistic subsets of reactions. This method is useful for determining the activity of metabolic reactions in Escherichia coli and will be essential for understanding human cellular metabolism.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000082 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00082&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000082

DOI: 10.1371/journal.pcbi.1000082

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000082