Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development
Anthony Randal McIntosh,
Natasa Kovacevic and
Roxane J Itier
PLOS Computational Biology, 2008, vol. 4, issue 7, 1-9
Abstract:
As the brain matures, its responses become optimized. Behavioral measures show this through improved accuracy and decreased trial-to-trial variability. The question remains whether the supporting brain dynamics show a similar decrease in variability. We examined the relation between variability in single trial evoked electrical activity of the brain (measured with EEG) and performance of a face memory task in children (8–15 y) and young adults (20–33 y). Behaviorally, children showed slower, more variable response times (RT), and less accurate recognition than adults. However, brain signal variability increased with age, and showed strong negative correlations with intrasubject RT variability and positive correlations with accuracy. Thus, maturation appears to lead to a brain with greater functional variability, which is indicative of enhanced neural complexity. This variability may reflect a broader repertoire of metastable brain states and more fluid transitions among them that enable optimum responses. Our results suggest that the moment-to-moment variability in brain activity may be a critical index of the cognitive capacity of the brain.Author Summary: Intuitive notions of brain–behavior relationships would suggest that because children show more variability in behavior, their brains should also be more variable. We demonstrate that this is not the case. In measuring brain signal variability with EEG and behavior in a simple face recognition task, we found that brain signal variability increases in children from 8–15 y and is even higher in young adults. Importantly, we show that this increased brain variability correlates with reduced behavioral variability and more accurate performance. A brain that has more variability also has greater complexity and a greater capacity for information processing. The implication of our findings is that variability in brain signals, or what some would call noise, is actually a critical feature of brain function. For the brain to operate at an optimal level, a certain amount of internal noise is necessary. In a certain way it could be stated that a noisy brain is a healthy brain.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000106 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00106&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000106
DOI: 10.1371/journal.pcbi.1000106
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().