Optimal Compensation for Temporal Uncertainty in Movement Planning
Todd E Hudson,
Laurence T Maloney and
Michael S Landy
PLOS Computational Biology, 2008, vol. 4, issue 7, 1-9
Abstract:
Motor control requires the generation of a precise temporal sequence of control signals sent to the skeletal musculature. We describe an experiment that, for good performance, requires human subjects to plan movements taking into account uncertainty in their movement duration and the increase in that uncertainty with increasing movement duration. We do this by rewarding movements performed within a specified time window, and penalizing slower movements in some conditions and faster movements in others. Our results indicate that subjects compensated for their natural duration-dependent temporal uncertainty as well as an overall increase in temporal uncertainty that was imposed experimentally. Their compensation for temporal uncertainty, both the natural duration-dependent and imposed overall components, was nearly optimal in the sense of maximizing expected gain in the task. The motor system is able to model its temporal uncertainty and compensate for that uncertainty so as to optimize the consequences of movement.Author Summary: Many recent models of motor planning are based on the idea that the CNS plans movements to minimize “costs” intrinsic to motor performance. A minimum variance model would predict that the motor system plans movements that minimize motor error (as measured by the variance in movement) subject to the constraint that the movement be completed within a specified time limit. A complementary model would predict that the motor system minimizes movement time subject to the constraint that movement variance not exceed a certain fixed threshold. But neither of these models is adequate to predict performance in everyday tasks that include external costs imposed by the environment where good performance requires that the motor system select a tradeoff between speed and accuracy. In driving to the airport to catch a plane, for example, there are very real costs associated with driving too fast and also with being just a bit too late. But the “optimal” tradeoff depends on road conditions and also on how important it is to catch the plane. We examine motor performance in analogous experimental tasks where we impose arbitrary monetary costs on movements that are “late” or “early” and show that humans systematically trade off risk and reward so as to maximize their expected monetary gain.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000130 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00130&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000130
DOI: 10.1371/journal.pcbi.1000130
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().