Combining Structural Connectivity and Response Latencies to Model the Structure of the Visual System
Michael Capalbo,
Eric Postma and
Rainer Goebel
PLOS Computational Biology, 2008, vol. 4, issue 8, 1-14
Abstract:
Several approaches exist to ascertain the connectivity of the brain, and these approaches lead to markedly different topologies, often incompatible with each other. Specifically, recent single-cell recording results seem incompatible with current structural connectivity models. We present a novel method that combines anatomical and temporal constraints to generate biologically plausible connectivity patterns of the visual system of the macaque monkey. Our method takes structural connectivity data from the CoCoMac database and recent single-cell recording data as input and employs an optimization technique to arrive at a new connectivity pattern of the visual system that is in agreement with both types of experimental data. The new connectivity pattern yields a revised model that has fewer levels than current models. In addition, it introduces subcortical–cortical connections. We show that these connections are essential for explaining latency data, are consistent with our current knowledge of the structural connectivity of the visual system, and might explain recent functional imaging results in humans. Furthermore we show that the revised model is not underconstrained like previous models and can be extended to include newer data and other kinds of data. We conclude that the revised model of the connectivity of the visual system reflects current knowledge on the structure and function of the visual system and addresses some of the limitations of previous models.Author Summary: Visual perception is very important to us, something we can easily come to realize if we imagine ourselves blind. The visual system consists of numerous interconnected brain areas. If we are to understand the functioning of the visual system, then we will need to understand the connectivity between these areas. Current models of the visual system have a number of limitations. One of these is that the time it takes for the neural signal to reach a certain area often seems inconsistent with the place of that area in the overall structure of the system; e.g., the signal might arrive relatively quickly at an area generally located “higher” in the visual system and slowly at an area located in the “lower” part. We combine data about the known connectivity in the monkey brain with timing data to find a network structure that is consistent with both kinds of data. The results show that the timing data can be explained when the network contains direct routes from subcortical areas to “higher” cortical areas. We show that our model has fewer limitations than previous models and might explain unresolved issues in the study of connectivity in the human brain.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000159 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00159&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000159
DOI: 10.1371/journal.pcbi.1000159
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().