The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation
David M Santucci and
Sridhar Raghavachari
PLOS Computational Biology, 2008, vol. 4, issue 10, 1-16
Abstract:
N-Methyl-d-aspartic acid (NMDA) receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future experiments to address open questions concerning NMDA receptor function.Author Summary: Information processing in the brain is carried out by networks of neurons connected by synapses. Synapses can change strength, allowing these networks to adapt and learn, in a process known as synaptic plasticity. At a synapse, an electrical signal in one neuron is converted into a chemical signal, carried by a neurotransmitter, which is in turn converted into electrical and chemical signals in another neuron by specialized proteins called receptors. One such protein, the N-methyl-d-aspartic acid (NMDA) receptor, is particularly important for plasticity, due to its ability to detect the voltage of the cell receiving the neurotransmitter signal and to the fact that it allows calcium, an important signaling molecule, to enter the cell. Here we use computational modeling to investigate the role of one part of the NMDA receptor: the NR2 subunit. The subunit has various forms, and which of these forms are present in the NMDA receptor can strongly affect the kinetics and other properties of the receptor. We show that, along with changing the kinetics of the receptor, changing the NR2 subunit affects the reliability of the receptor, its ability to respond to large stimuli, and its spatial response properties. These results have implications for synaptic transmission and plasticity.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000208 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00208&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000208
DOI: 10.1371/journal.pcbi.1000208
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().