EconPapers    
Economics at your fingertips  
 

Search Algorithms as a Framework for the Optimization of Drug Combinations

Diego Calzolari, Stefania Bruschi, Laurence Coquin, Jennifer Schofield, Jacob D Feala, John C Reed, Andrew D McCulloch and Giovanni Paternostro

PLOS Computational Biology, 2008, vol. 4, issue 12, 1-14

Abstract: Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms—originally developed for digital communication—modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6–9 interventions in 80–90% of tests, compared with 15–30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution. Author Summary: This work describes methods that identify drug combinations that might alleviate the suffering caused by complex diseases. Our biological model systems are: physiological decline associated with aging, and selective killing of cancer cells. The novelty of this approach is based on a new application of methods from digital communications theory, which becomes useful when the number of possible combinations is large and a complete set of measurements cannot be obtained. This limit is reached easily, given the many drugs and doses available for complex diseases. We are not simply using computer models but are using search algorithms implemented with biological measurements, built to integrate information from different sources, including simulations. This might be considered parallel biological computation and differs from the classic systems biology approach by having search algorithms rather than explicit quantitative models as the central element. Because variation is an essential component of biology, this approach might be more appropriate for combined drug interventions, which can be considered a form of biological control. Search algorithms are used in many fields in physics and engineering. We hope that this paper will generate interest in a new application of importance to human health from practitioners of diverse computational disciplines.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000249 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00249&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000249

DOI: 10.1371/journal.pcbi.1000249

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000249