Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches
Sinisa Pajevic and
Dietmar Plenz
PLOS Computational Biology, 2009, vol. 5, issue 1, 1-20
Abstract:
Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics. Author Summary: In many complex systems found across disciplines, such as biological cells and organisms, social networks, economic systems, and the Internet, individual elements interact with each other, thereby forming large networks whose structure is often not known. In these complex networks, local events can easily propagate, resulting in diverse spatio-temporal activity cascades, or avalanches. Examples of such cascading activity are the propagation of diseases in social networks, cascades of chemical reactions inside a cell, the propagation of neuronal activity in the brain, and e-mail forwarding on the Internet. Although the observation of a single cascade provides limited insight into the organization of a complex network, the observation of many cascades allows for the reconstruction of very robust features of network organization, providing valuable insight into network function as well as network failure. The current work develops new algorithms for an efficient reconstruction of relatively large networks in the context of cascading activity. When applied to the brain, these algorithms uncover the structural and functional features of gray matter networks that display activity cascades in the form of neuronal avalanches.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000271 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00271&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000271
DOI: 10.1371/journal.pcbi.1000271
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().