EconPapers    
Economics at your fingertips  
 

Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter

Boian S Alexandrov, Vladimir Gelev, Sang Wook Yoo, Alan R Bishop, Kim Ø Rasmussen and Anny Usheva

PLOS Computational Biology, 2009, vol. 5, issue 3, 1-10

Abstract: Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.Author Summary: Accessing the information encoded in DNA requires that RNA polymerases recognize the core promoter, a sequence that marks the start of a gene. Statistical analysis of known promoter sequences has failed to reveal a simple code for identifying promoters, leading to the suggestion that promoter DNA is distinguished by certain structural/dynamic properties encoded in nonobvious ways by the literal sequence. Because the DNA strands at the promoter need to be separated for transcription to begin, we previously proposed that promoter sequences exhibit a propensity for spontaneous strand separation. Here, we conduct simulations of the ultrafast, small-scale strand separation motions of eight mammalian promoters and show that start sites tend to form larger and more stable openings in the double helix compared to other sequences. Experimentally, we show that an artificial permanent opening in the double helix is sufficient for transcription in the absence of sequence-specific protein–DNA contacts. These findings support a view of DNA as a structurally active participant in gene expression, rather than the commonly envisioned passive digital storage device. Our analysis suggests that functionally relevant structural variation in genomic DNA occurs at the level of fast motions not readily observed by traditional molecular structure analysis.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000313 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00313&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000313

DOI: 10.1371/journal.pcbi.1000313

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000313