Broadband Criticality of Human Brain Network Synchronization
Manfred G Kitzbichler,
Marie L Smith,
Søren R Christensen and
Ed Bullmore
PLOS Computational Biology, 2009, vol. 5, issue 3, 1-13
Abstract:
Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal “avalanches” previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth.Author Summary: Systems in a critical state are poised on the cusp of a transition between ordered and random behavior. At this point, they demonstrate complex patterning of fluctuations at all scales of space and time. Criticality is an attractive model for brain dynamics because it optimizes information transfer, storage capacity, and sensitivity to external stimuli in computational models. However, to date there has been little direct experimental evidence for critical dynamics of human brain networks. Here, we considered two measures of functional coupling or phase synchronization between components of a dynamic system: the phase lock interval or duration of synchronization between a specific pair of time series or processes in the system and the lability of global synchronization among all pairs of processes. We confirmed that both synchronization metrics demonstrated scale invariant behaviors in two computational models of critical dynamics as well as in human brain functional systems oscillating at low frequencies (
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000314 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00314&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000314
DOI: 10.1371/journal.pcbi.1000314
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().