EconPapers    
Economics at your fingertips  
 

Polymorphism Data Can Reveal the Origin of Species Abundance Statistics

Yosef E Maruvka and Nadav M Shnerb

PLOS Computational Biology, 2009, vol. 5, issue 4, 1-6

Abstract: What is the underlying mechanism behind the fat-tailed statistics observed for species abundance distributions? The two main hypotheses in the field are the adaptive (niche) theories, where species abundance reflects its fitness, and the neutral theory that assumes demographic stochasticity as the main factor determining community structure. Both explanations suggest quite similar species-abundance distributions, but very different histories: niche scenarios assume that a species population in the past was similar to the observed one, while neutral scenarios are characterized by strongly fluctuating populations. Since the genetic variations within a population depend on its abundance in the past, we present here a way to discriminate between the theories using the genetic diversity of noncoding DNA. A statistical test, based on the Fu-Li method, has been developed and enables such a differentiation. We have analyzed the results gathered from individual-based simulation of both types of histories and obtained clear distinction between the Fu-Li statistics of the neutral scenario and that of the niche scenario. Our results suggest that data for 10–50 species, with approximately 30 sequenced individuals for each species, may allow one to distinguish between these two theories.Author Summary: One purchases 100 wineglasses and 100 pairs of pants. After one year, 10 glasses and 10 pants survive. What can be said about the relative quality of the survivors? Well, clothes “die” as a result of accumulated wear; the surviving items are of better quality. The breaking of a wineglass is an external, random event: here the survivors are not the best, but the luckiest. To tell apart the superior from the fortunate, one should examine the development over time: the number of surviving items decays exponentially with time for the glasses and follows a sigmoid curve for the pants. An ongoing argument among macroecologists deals with similar issues. Adaptive theories suggest that the frequent species are the fittest, while the neutral theory explains the observed frequencies as a result of demographic stochasticity, assuming all species to have the same fitness. The histories suggested by the two scenarios are clearly different, but how can one probe the prehistoric abundance of species? In fact, past abundance is reflected in current genetic variance within a population. Here, we present a new technique, based on the Fu-Li F-statistic, which allows one to distinguish between niche and neutral scenarios and to resolve this important debate.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000359 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00359&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000359

DOI: 10.1371/journal.pcbi.1000359

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000359