EconPapers    
Economics at your fingertips  
 

Maximum-Likelihood Model Averaging To Profile Clustering of Site Types across Discrete Linear Sequences

Zhang Zhang and Jeffrey P Townsend

PLOS Computational Biology, 2009, vol. 5, issue 6, 1-14

Abstract: A major analytical challenge in computational biology is the detection and description of clusters of specified site types, such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable methods to detect clusters and to estimate the extent of clustering in discrete linear sequences, particularly when there is no a priori specification of cluster size or cluster count. Here we derive and demonstrate a maximum likelihood method of hierarchical clustering. Our method incorporates a tripartite divide-and-conquer strategy that models sequence heterogeneity, delineates clusters, and yields a profile of the level of clustering associated with each site. The clustering model may be evaluated via model selection using the Akaike Information Criterion, the corrected Akaike Information Criterion, and the Bayesian Information Criterion. Furthermore, model averaging using weighted model likelihoods may be applied to incorporate model uncertainty into the profile of heterogeneity across sites. We evaluated our method by examining its performance on a number of simulated datasets as well as on empirical polymorphism data from diverse natural alleles of the Drosophila alcohol dehydrogenase gene. Our method yielded greater power for the detection of clustered sites across a breadth of parameter ranges, and achieved better accuracy and precision of estimation of clusters, than did the existing empirical cumulative distribution function statistics.Author Summary: The invention and application of high-throughput technologies for DNA sequencing have resulted in an increasing abundance of biological sequence data. DNA or protein sequence data are naturally arranged as discrete linear sequences, and one of the fundamental challenges of analysis of sequence data is the description of how those sequences are arranged. Individual sites may be very sequentially heterogeneous or highly clustered into more homogeneous regions. However, progress in addressing this challenge has been hampered by a lack of suitable methods to accurately identify clustering of similar sites when there is no a priori specification of anticipated cluster size or count. Here, we present an algorithm that addresses this challenge, demonstrate its effectiveness with simulated data, and apply it to an example of genetic polymorphism data. Our algorithm requires no a priori knowledge and exhibits greater power than any other unsupervised algorithms. Furthermore, we apply model averaging methodology to overcome the natural and extensive uncertainty in cluster borders, facilitating estimation of a realistic profile of sequence heterogeneity and clustering. These profiles are of broad utility for computational analyses or visualizations of heterogeneity in discrete linear sequences, an enterprise of rapidly increasing importance given the diminishing costs of nucleic acid sequencing.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000421 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00421&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000421

DOI: 10.1371/journal.pcbi.1000421

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000421