EconPapers    
Economics at your fingertips  
 

Recognizing Sequences of Sequences

Stefan J Kiebel, Katharina von Kriegstein, Jean Daunizeau and Karl J Friston

PLOS Computational Biology, 2009, vol. 5, issue 8, 1-13

Abstract: The brain's decoding of fast sensory streams is currently impossible to emulate, even approximately, with artificial agents. For example, robust speech recognition is relatively easy for humans but exceptionally difficult for artificial speech recognition systems. In this paper, we propose that recognition can be simplified with an internal model of how sensory input is generated, when formulated in a Bayesian framework. We show that a plausible candidate for an internal or generative model is a hierarchy of ‘stable heteroclinic channels’. This model describes continuous dynamics in the environment as a hierarchy of sequences, where slower sequences cause faster sequences. Under this model, online recognition corresponds to the dynamic decoding of causal sequences, giving a representation of the environment with predictive power on several timescales. We illustrate the ensuing decoding or recognition scheme using synthetic sequences of syllables, where syllables are sequences of phonemes and phonemes are sequences of sound-wave modulations. By presenting anomalous stimuli, we find that the resulting recognition dynamics disclose inference at multiple time scales and are reminiscent of neuronal dynamics seen in the real brain.Author Summary: Despite tremendous advances in neuroscience, we cannot yet build machines that recognize the world as effortlessly as we do. One reason might be that there are computational approaches to recognition that have not yet been exploited. Here, we demonstrate that the ability to recognize temporal sequences might play an important part. We show that an artificial decoding device can extract natural speech sounds from sound waves if speech is generated as dynamic and transient sequences of sequences. In principle, this means that artificial recognition can be implemented robustly and online using dynamic systems theory and Bayesian inference.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000464 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00464&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000464

DOI: 10.1371/journal.pcbi.1000464

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1000464