Evolutionary Triplet Models of Structured RNA
Robert K Bradley and
Ian Holmes
PLOS Computational Biology, 2009, vol. 5, issue 8, 1-20
Abstract:
The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural changes. We describe a “transducer composition” algorithm for extending pairwise probabilistic models of RNA structural evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference; appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic inference, we discuss the use of transducer composition for ML (or MCMC) inference on phylogenies, including possible ways to make the core operations tractable.Author Summary: A number of leading methods for bioinformatics analysis of structural RNAs use probabilistic grammars as models for pairs of homologous RNAs. We show that any such pairwise grammar can be extended to an entire phylogeny by treating the pairwise grammar as a machine (a “transducer”) that models a single ancestor-descendant relationship in the tree, transforming one RNA structure into another. In addition to phylogenetic enhancement of current applications, such as RNA genefinding, homology detection, alignment and secondary structure prediction, this should enable probabilistic phylogenetic reconstruction of RNA sequences that are ancestral to present-day genes. We describe statistical inference algorithms, software implementations, and a simulation-based comparison of three-taxon maximum likelihood alignment to several other methods for aligning three sibling RNAs. In the Discussion we consider how the three-taxon RNA alignment-reconstruction-folding algorithm, which is currently very computationally-expensive, might be made more efficient so that larger phylogenies could be considered.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000483 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00483&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000483
DOI: 10.1371/journal.pcbi.1000483
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().