Computation of Conformational Coupling in Allosteric Proteins
Brian A Kidd,
David Baker and
Wendy E Thomas
PLOS Computational Biology, 2009, vol. 5, issue 8, 1-10
Abstract:
In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.Author Summary: A common means of biological regulation is allostery, in which an effector molecule binds to one site on a protein and induces a conformational change which changes activity at a distant active site. Frequently high resolution structures are determined for one state of an allosteric protein but not the other. To probe the allosteric conformational changes in such cases, we describe a computational method for predicting the structure of one allosteric state of a protein starting with knowledge of another. Our method also provides a detailed map of the free energy landscape traversed in an allosteric transition and reveals the coupling between interacting residue pairs that underlies the transition.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000484 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00484&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000484
DOI: 10.1371/journal.pcbi.1000484
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().