EconPapers    
Economics at your fingertips  
 

The Mechanism of Ubiquitination in the Cullin-RING E3 Ligase Machinery: Conformational Control of Substrate Orientation

Jin Liu and Ruth Nussinov

PLOS Computational Biology, 2009, vol. 5, issue 10, 1-10

Abstract: In cullin-RING E3 ubiquitin ligases, substrate binding proteins, such as VHL-box, SOCS-box or the F-box proteins, recruit substrates for ubiquitination, accurately positioning and orienting the substrates for ubiquitin transfer. Yet, how the E3 machinery precisely positions the substrate is unknown. Here, we simulated nine substrate binding proteins: Skp2, Fbw7, β-TrCP1, Cdc4, Fbs1, TIR1, pVHL, SOCS2, and SOCS4, in the unbound form and bound to Skp1, ASK1 or Elongin C. All nine proteins have two domains: one binds to the substrate; the other to E3 ligase modules Skp1/ASK1/Elongin C. We discovered that in all cases the flexible inter-domain linker serves as a hinge, rotating the substrate binding domain, optimally and accurately positioning it for ubiquitin transfer. We observed a conserved proline in the linker of all nine proteins. In all cases, the prolines pucker substantially and the pucker is associated with the backbone rotation toward the E2/ubiquitin. We further observed that the linker flexibility could be regulated allosterically by binding events associated with either domain. We conclude that the flexible linker in the substrate binding proteins orients the substrate for the ubiquitin transfer. Our findings provide a mechanism for ubiquitination and polyubiquitination, illustrating that these processes are under conformational control.Author Summary: The Ubiquitin-Proteasome System regulates protein degradation via several steps. The cullin-RING E3 ligase machinery is involved in one of these. In this step, ubiquitin is transferred from E2 to the substrate protein, labeling the substrate protein for degradation. However, when E3, E3-substrate and E2-ubiquitin crystal structures are modeled together, the distance between ubiquitinated E2 and the substrate binding site is ∼50–59Å, raising the question how the E3 machinery bridges the distance and orients the substrate for the ubiquitin transfer. We performed explicit solvent simulations for all nine available substrate binding protein complexes in the PDB, with and without the corresponding E3 components to which they are bound. In all of these nine substrate binding proteins, we noticed a flexible linker that rotates the substrate binding domain to a great extent in the same direction, toward the E2-ubiquin. We further noticed that the flexibility is regulated allosterically by binding events associated with either domain. The results suggest that the flexible linker serves as a hinge to rotate the substrate binding domain and to accurately position the substrate for ubiquitination. As such, the simulations suggest an answer to the question of how the machinery operates to orient the substrate for ubiquitination.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000527 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00527&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000527

DOI: 10.1371/journal.pcbi.1000527

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000527