High-Performance Drug Discovery: Computational Screening by Combining Docking and Molecular Dynamics Simulations
Noriaki Okimoto,
Noriyuki Futatsugi,
Hideyoshi Fuji,
Atsushi Suenaga,
Gentaro Morimoto,
Ryoko Yanai,
Yousuke Ohno,
Tetsu Narumi and
Makoto Taiji
PLOS Computational Biology, 2009, vol. 5, issue 10, 1-13
Abstract:
Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, this method is not completely reliable and therefore unsatisfactory. In this study, we used massive molecular dynamics simulations of protein-ligand conformations obtained by molecular docking in order to improve the enrichment performance of molecular docking. Our screening approach employed the molecular mechanics/Poisson-Boltzmann and surface area method to estimate the binding free energies. For the top-ranking 1,000 compounds obtained by docking to a target protein, approximately 6,000 molecular dynamics simulations were performed using multiple docking poses in about a week. As a result, the enrichment performance of the top 100 compounds by our approach was improved by 1.6–4.0 times that of the enrichment performance of molecular dockings. This result indicates that the application of molecular dynamics simulations to virtual screening for lead discovery is both effective and practical. However, further optimization of the computational protocols is required for screening various target proteins.Author Summary: Lead discovery is one of the most important processes in rational drug design. To improve the rate of the detection of lead compounds, various technologies such as high-throughput screening and combinatorial chemistry have been introduced into the pharmaceutical industry. However, since these technologies alone may not improve lead productivity, computational screening has become important. A central method for computational screening is molecular docking. This method generally docks many flexible ligands to a rigid protein and predicts the binding affinity for each ligand in a practical time. However, its ability to detect lead compounds is less reliable. In contrast, molecular dynamics simulations can treat both proteins and ligands in a flexible manner, directly estimate the effect of explicit water molecules, and provide more accurate binding affinity, although their computational costs and times are significantly greater than those of molecular docking. Therefore, we developed a special purpose computer “MDGRAPE-3” for molecular dynamics simulations and applied it to computational screening. In this paper, we report an effective method for computational screening; this method is a combination of molecular docking and massive-scale molecular dynamics simulations. The proposed method showed a higher and more stable enrichment performance than the molecular docking method used alone.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000528 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00528&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000528
DOI: 10.1371/journal.pcbi.1000528
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().