EconPapers    
Economics at your fingertips  
 

Specific Entrainment of Mitral Cells during Gamma Oscillation in the Rat Olfactory Bulb

François O David, Etienne Hugues, Tristan Cenier, Nicolas Fourcaud-Trocmé and Nathalie Buonviso

PLOS Computational Biology, 2009, vol. 5, issue 10, 1-19

Abstract: Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism.Author Summary: Olfactory function relies on a chain of neural relays that extends from the periphery to the central nervous system and implies neural activity with various timescales. A central question in neuroscience is how information is encoded by the neural activity. In the mammalian olfactory bulb, local neural activity oscillations in the 40–80 Hz range (gamma) may influence the timing of individual neuron activities such that olfactory information may be encoded in this way. In this study, we first characterize in vivo the detailed activity of individual neurons relative to the oscillation and find that, depending on their state, neurons can exhibit periodic activity patterns. We also find, at least qualitatively, a relation between this activity and a particular odor. This is reminiscent of general physical phenomena—the entrainment by an oscillation—and to verify this hypothesis, in a second phase, we build a biologically realistic model mimicking these in vivo conditions. Our model confirms quantitatively this hypothesis and reveals that entrainment is maximal in the gamma range. Taken together, our results suggest that the neuronal activity may be specifically formatted in time during the gamma oscillation in such a way that it could, at this stage, encode the odor.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000551 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00551&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000551

DOI: 10.1371/journal.pcbi.1000551

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1000551