A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning
Tian Ge,
Keith M Kendrick and
Jianfeng Feng
PLOS Computational Biology, 2009, vol. 5, issue 11, 1-13
Abstract:
Two main approaches in exploring causal relationships in biological systems using time-series data are the application of Dynamic Causal model (DCM) and Granger Causal model (GCM). These have been extensively applied to brain imaging data and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways. However, these two approaches have always been considered to be radically different from each other and therefore used independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by applying it extensively in toy models in both time and frequency domains and then applied it to local field potential recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes between and within left and right inferotemporal cortexes as a result of face recognition learning.Author Summary: The right temporal cortex has previously been shown to play a greater role in the discrimination of faces in both sheep and humans. In the frequency domain, analysis of the relative causal contributions of low (theta 4–8Hz) and high (gamma 30–70Hz) frequency oscillations reveals that prior to learning, theta activity is more predominant in right than in left hemisphere processing, and that learning reduces this so that high frequency oscillations gain more control. We have been able to demonstrate that the frequency of connections increases in the right hemisphere and decreases between the left and right hemispheres after learning. The results are obtained based upon a way to combine aspects of both the Granger and Dynamic Causal Models, which can be used to establish significant causal relations in both time and frequency domains and applied to local field potential recordings from multiple (64 channel) electrodes implanted in the inferotemporal cortex of both sides of the brain in sheep in order to establish changes in causal connections within and between the two hemispheres as a result of learning to discriminate visually between pairs of faces. It is anticipated that this new approach to the measurement of causality will not only help reveal how the two brain hemispheres interact, but will also be applicable to many different types of biological data where variations in both frequency and temporal domains can be measured.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000570 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00570&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000570
DOI: 10.1371/journal.pcbi.1000570
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().