EconPapers    
Economics at your fingertips  
 

Quantification of Circadian Rhythms in Single Cells

Pål O Westermark, David K Welsh, Hitoshi Okamura and Hanspeter Herzel

PLOS Computational Biology, 2009, vol. 5, issue 11, 1-10

Abstract: Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this question, however, by testing the models' predictions of different phases and amplitudes in response to a periodic entrainment signal (zeitgeber).Author Summary: Earth's 24-h-rotation around its axis is mirrored in the circadian clock that resides within each of our cells, controlling expression of ∼10% of all genes. The circadian clock is constructed as a negative feedback loop, in which clock proteins inhibit their own synthesis. During the last decade, a picture has emerged in which each cell is a self-sustained circadian oscillator that runs even without synchronizing cues. Here, we investigated state-of-the-art single-cell bioluminescence recordings of clock gene expression. It turns out that these time series are very well described by low-dimensional models, enabling us to extract descriptive parameters that characterize each cell. We find that different cell types do not differ much in their dynamics. However, different mutations in core clock genes yield different dynamic characteristics. Furthermore, we could not statistically reject the idea that the cells are in fact damped oscillators driven by noise. We thus declare the question of whether the circadian clock is a damped or self-sustained oscillator still unresolved. Further, we propose a way to resolve this question by examining the frequency-dependent response of single cells to periodic stimuli. We will then be in a better position to understand how cells coordinate and synchronize their circadian rhythms.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000580 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00580&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000580

DOI: 10.1371/journal.pcbi.1000580

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1000580