EconPapers    
Economics at your fingertips  
 

Inferring Binding Energies from Selected Binding Sites

Yue Zhao, David Granas and Gary D Stormo

PLOS Computational Biology, 2009, vol. 5, issue 12, 1-8

Abstract: We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms.Author Summary: The DNA binding sites of transcription factors that control gene expression are often predicted based on a collection of known or selected binding sites. The most commonly used methods for inferring the binding site pattern, or sequence motif, assume that the sites are selected in proportion to their affinity for the transcription factor, ignoring the effect of the transcription factor concentration. We have developed a new maximum likelihood approach, in a program called BEEML, that directly takes into account the transcription factor concentration as well as non-specific contributions to the binding affinity, and we show in simulation studies that it gives a much more accurate model of the transcription factor binding sites than previous methods. We also develop a new method for extracting binding sites for a transcription factor from a random pool of DNA sequences, called high-throughput SELEX (HT-SELEX), and we show that after a single round of selection BEEML can obtain an accurate model of the transcription factor binding sites.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000590 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00590&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000590

DOI: 10.1371/journal.pcbi.1000590

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000590