EconPapers    
Economics at your fingertips  
 

How Synchronization Protects from Noise

Nicolas Tabareau, Jean-Jacques Slotine and Quang-Cuong Pham

PLOS Computational Biology, 2010, vol. 6, issue 1, 1-9

Abstract: The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding, in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-called “collective enhancement of precision”. We argue, in a full nonlinear dynamical context, that synchronization may help protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific, quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology.Author Summary: Synchronization phenomena are pervasive in biology, creating collective behavior out of local interactions between neurons, cells, or animals. On the other hand, many of these systems function in the presence of large amounts of noise or disturbances, making one wonder how meaningful behavior can arise in these highly perturbed conditions. In this paper we show mathematically, in a general context, that synchronization is actually a means to protect interconnected systems from effects of noise and disturbances. One possible mechanism for synchronization is that the systems jointly create and then share a common signal, such as a mean electrical field or a global chemical concentration, which in turn makes each system directly connected to all others. Conversely, extracting meaningful information from average measurements over populations of cells (as commonly used for instance in electro-encephalography, or more recently in brain-machine interfaces) may require the presence of synchronization mechanisms similar to those we describe.

Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000637 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00637&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000637

DOI: 10.1371/journal.pcbi.1000637

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1000637