Associating Genes and Protein Complexes with Disease via Network Propagation
Oron Vanunu,
Oded Magger,
Eytan Ruppin,
Tomer Shlomi and
Roded Sharan
PLOS Computational Biology, 2010, vol. 6, issue 1, 1-9
Abstract:
A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.Author Summary: Understanding the genetic background of diseases is crucial to medical research, with implications in diagnosis, treatment and drug development. As molecular approaches to this challenge are time consuming and costly, computational approaches offer an efficient alternative. Such approaches aim at prioritizing genes in a genomic interval of interest according to their predicted strength-of-association with a given disease. State-of-the-art prioritization problems are based on the observation that genes causing similar diseases tend to lie close to one another in a network of protein-protein interactions. Here we develop a novel prioritization approach that uses the network data in a global manner and can tie not only single genes but also whole protein machineries with a given disease. Our method, PRINCE, is shown to outperform previous methods in both the gene prioritization task and the protein complex task. Applying PRINCE to prostate cancer, alzheimer's disease and type 2 diabetes, we are able to infer new causal genes and related protein complexes with high confidence.
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000641 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00641&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000641
DOI: 10.1371/journal.pcbi.1000641
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().