Detailed Simulations of Cell Biology with Smoldyn 2.1
Steven S Andrews,
Nathan J Addy,
Roger Brent and
Adam P Arkin
PLOS Computational Biology, 2010, vol. 6, issue 3, 1-10
Abstract:
Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells.Author Summary: We developed a general-purpose biochemical simulation program, called Smoldyn. It represents proteins and other molecules of interest with point-like particles that diffuse, interact with surfaces, and react, all in continuous space. This high level of detail allows users to investigate spatial organization within cells and natural stochastic variability. Although similar to the MCell and ChemCell programs, Smoldyn is more accurate and runs faster. Smoldyn also supports many unique features, such as commands that a “virtual experimenter” can execute during simulations and automatic reaction network expansion for simulating protein complexes. We illustrate Smoldyn's capabilities with a model of signaling between yeast cells of opposite mating type. It investigates the role of the secreted protease Bar1, which inactivates mating pheromone. Intuitively, it might seem that inactivating most of the pheromone would make a cell less able to detect the local pheromone concentration gradient. In contrast, we found that Bar1 secretion improves pheromone gradient detectability: the local gradient is sharpened because pheromone is progressively inactivated as it diffuses through a cloud of Bar1. This result helps interpret experiments that showed that Bar1 secretion helped cells distinguish between potential mates, and suggests that Bar1 helps yeast cells identify the fittest mating partners.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000705 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00705&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000705
DOI: 10.1371/journal.pcbi.1000705
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().