Slower Visuomotor Corrections with Unchanged Latency are Consistent with Optimal Adaptation to Increased Endogenous Noise in the Elderly
Michael Sherback,
Francisco J Valero-Cuevas and
Raffaello D'Andrea
PLOS Computational Biology, 2010, vol. 6, issue 3, 1-13
Abstract:
We analyzed age-related changes in motor response in a visuomotor compensatory tracking task. Subjects used a manipulandum to attempt to keep a displayed cursor at the center of a screen despite random perturbations to its location. Cross-correlation analysis of the perturbation and the subject response showed no age-related increase in latency until the onset of response to the perturbation, but substantial slowing of the response itself. Results are consistent with age-related deterioration in the ratio of signal to noise in visuomotor response. The task is such that it is tractable to use Bayesian and quadratic optimality assumptions to construct a model for behavior. This model assumes that behavior resembles an optimal controller subject to noise, and parametrizes response in terms of latency, willingness to expend effort, noise intensity, and noise bandwidth. The model is consistent with the data for all young (n = 12, age 20–30) and most elderly (n = 12, age 65–92) subjects. The model reproduces the latency result from the cross-correlation method. When presented with increased noise, the computational model reproduces the experimentally observed age-related slowing and the observed lack of increased latency. The model provides a precise way to quantitatively formulate the long-standing hypothesis that age-related slowing is an adaptation to increased noise.Author Summary: In a hand-eye coordination task that requires continuous movement to correct for a disturbance, it turns out that signs of response to the disturbance appear no later in the elderly than in the young. The elderly motion is noisy and less efficient, however, and once movements in response to a disturbance begin, they are at a lower speed. One can model subject response by assuming that it results from combining noise and a response that is mathematically optimal given this noise, delay, and a least-squares sort of control objective. This modeling approach is appropriate for young and most elderly subjects. The model holds that increased noise should lead to no change in delay until response gets underway, but should make the response itself proceed at a slower speed. This is consistent with the data and with a causal link from the observed noise and disorder in elderly motor function to the observed age-related slowing.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000708 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00708&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000708
DOI: 10.1371/journal.pcbi.1000708
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().