EconPapers    
Economics at your fingertips  
 

Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation

Carey D Nadell, Kevin R Foster and João B Xavier

PLOS Computational Biology, 2010, vol. 6, issue 3, 1-9

Abstract: On its own, a single cell cannot exert more than a microscopic influence on its immediate surroundings. However, via strength in numbers and the expression of cooperative phenotypes, such cells can enormously impact their environments. Simple cooperative phenotypes appear to abound in the microbial world, but explaining their evolution is challenging because they are often subject to exploitation by rapidly growing, non-cooperative cell lines. Population spatial structure may be critical for this problem because it influences the extent of interaction between cooperative and non-cooperative individuals. It is difficult for cooperative cells to succeed in competition if they become mixed with non-cooperative cells, which can exploit the public good without themselves paying a cost. However, if cooperative cells are segregated in space and preferentially interact with each other, they may prevail. Here we use a multi-agent computational model to study the origin of spatial structure within growing cell groups. Our simulations reveal that the spatial distribution of genetic lineages within these groups is linked to a small number of physical and biological parameters, including cell growth rate, nutrient availability, and nutrient diffusivity. Realistic changes in these parameters qualitatively alter the emergent structure of cell groups, and thereby determine whether cells with cooperative phenotypes can locally and globally outcompete exploitative cells. We argue that cooperative and exploitative cell lineages will spontaneously segregate in space under a wide range of conditions and, therefore, that cellular cooperation may evolve more readily than naively expected.Author Summary: Cooperation is a fundamental and widespread phenomenon in nature, yet explaining the evolution of cooperation is difficult. Natural selection typically favors individuals that maximize their own reproduction, so how is it that many diverse organisms, from bacteria to humans, have evolved to help others at a cost to themselves? Research has shown that cooperation can most readily evolve when cooperative individuals preferentially help each other, but this leaves open another critical question: How do cooperators achieve selective interaction with one another? We focus on this question in the context of unicellular organisms, such as bacteria, which exhibit simple forms of cooperation that play roles in nutrient acquisition and pathogenesis. We use a realistic simulation framework to model large cell groups, and observe that cell lines can spontaneously segregate from each other in space as the group expands. Finally, we demonstrate that lineage segregation allows cooperative cell types to preferentially benefit each other, thereby favoring the evolution of cooperation.

Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000716 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00716&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000716

DOI: 10.1371/journal.pcbi.1000716

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1000716