EconPapers    
Economics at your fingertips  
 

Using Pre-existing Microarray Datasets to Increase Experimental Power: Application to Insulin Resistance

Bernie J Daigle, Alicia Deng, Tracey McLaughlin, Samuel W Cushman, Margaret C Cam, Gerald Reaven, Philip S Tsao and Russ B Altman

PLOS Computational Biology, 2010, vol. 6, issue 3, 1-15

Abstract: Although they have become a widely used experimental technique for identifying differentially expressed (DE) genes, DNA microarrays are notorious for generating noisy data. A common strategy for mitigating the effects of noise is to perform many experimental replicates. This approach is often costly and sometimes impossible given limited resources; thus, analytical methods are needed which increase accuracy at no additional cost. One inexpensive source of microarray replicates comes from prior work: to date, data from hundreds of thousands of microarray experiments are in the public domain. Although these data assay a wide range of conditions, they cannot be used directly to inform any particular experiment and are thus ignored by most DE gene methods. We present the SVD Augmented Gene expression Analysis Tool (SAGAT), a mathematically principled, data-driven approach for identifying DE genes. SAGAT increases the power of a microarray experiment by using observed coexpression relationships from publicly available microarray datasets to reduce uncertainty in individual genes' expression measurements. We tested the method on three well-replicated human microarray datasets and demonstrate that use of SAGAT increased effective sample sizes by as many as 2.72 arrays. We applied SAGAT to unpublished data from a microarray study investigating transcriptional responses to insulin resistance, resulting in a 50% increase in the number of significant genes detected. We evaluated 11 (58%) of these genes experimentally using qPCR, confirming the directions of expression change for all 11 and statistical significance for three. Use of SAGAT revealed coherent biological changes in three pathways: inflammation, differentiation, and fatty acid synthesis, furthering our molecular understanding of a type 2 diabetes risk factor. We envision SAGAT as a means to maximize the potential for biological discovery from subtle transcriptional responses, and we provide it as a freely available software package that is immediately applicable to any human microarray study.Author Summary: Though the use of microarrays to identify differentially expressed (DE) genes has become commonplace, it is still not a trivial task. Microarray data are notorious for being noisy, and current DE gene methods do not fully utilize pre-existing biological knowledge to help control this noise. One such source of knowledge is the vast number of publicly available microarray datasets. To leverage this information, we have developed the SVD Augmented Gene expression Analysis Tool (SAGAT) for identifying DE genes. SAGAT extracts transcriptional modules from publicly available microarray data and integrates this information with a dataset of interest. We explore SAGAT's ability to improve DE gene identification on simulated data, and we validate the method on three highly replicated biological datasets. Finally, we demonstrate SAGAT's effectiveness on a novel human dataset investigating the transcriptional response to insulin resistance. Use of SAGAT leads to an increased number of insulin resistant candidate genes, and we validate a subset of these with qPCR. We provide SAGAT as an open source R package that is applicable to any human microarray study.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000718 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00718&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000718

DOI: 10.1371/journal.pcbi.1000718

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000718