Dynamics and Control of Diseases in Networks with Community Structure
Marcel Salathé and
James H Jones
PLOS Computational Biology, 2010, vol. 6, issue 4, 1-11
Abstract:
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.Author Summary: Understanding the spread of infectious diseases in populations is key to controlling them. Computational simulations of epidemics provide a valuable tool for the study of the dynamics of epidemics. In such simulations, populations are represented by networks, where hosts and their interactions among each other are represented by nodes and edges. In the past few years, it has become clear that many human social networks have a very remarkable property: they all exhibit strong community structure. A network with strong community structure consists of smaller sub-networks (the communities) that have many connections within them, but only few between them. Here we use both data from social networking websites and computer generated networks to study the effect of community structure on epidemic spread. We find that community structure not only affects the dynamics of epidemics in networks, but that it also has implications for how networks can be protected from large-scale epidemics.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (54)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000736 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00736&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000736
DOI: 10.1371/journal.pcbi.1000736
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().