EconPapers    
Economics at your fingertips  
 

New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach

Enrico Petretto, Leonardo Bottolo, Sarah R Langley, Matthias Heinig, Chris McDermott-Roe, Rizwan Sarwar, Michal Pravenec, Norbert Hübner, Timothy J Aitman, Stuart A Cook and Sylvia Richardson

PLOS Computational Biology, 2010, vol. 6, issue 4, 1-13

Abstract: The majority of expression quantitative trait locus (eQTL) studies have been carried out in single tissues or cell types, using methods that ignore information shared across tissues. Although global analysis of RNA expression in multiple tissues is now feasible, few integrated statistical frameworks for joint analysis of gene expression across tissues combined with simultaneous analysis of multiple genetic variants have been developed to date. Here, we propose Sparse Bayesian Regression models for mapping eQTLs within individual tissues and simultaneously across tissues. Testing these on a set of 2,000 genes in four tissues, we demonstrate that our methods are more powerful than traditional approaches in revealing the true complexity of the eQTL landscape at the systems-level. Highlighting the power of our method, we identified a two-eQTL model (cis/trans) for the Hopx gene that was experimentally validated and was not detected by conventional approaches. We showed common genetic regulation of gene expression across four tissues for ∼27% of transcripts, providing >5 fold increase in eQTLs detection when compared with single tissue analyses at 5% FDR level. These findings provide a new opportunity to uncover complex genetic regulatory mechanisms controlling global gene expression while the generality of our modelling approach makes it adaptable to other model systems and humans, with broad application to analysis of multiple intermediate and whole-body phenotypes.Author Summary: Integrated analysis of genome-wide genetic polymorphisms and gene expression profiles from different tissues or cell types has been highly successful in identifying genes modulating complex phenotypes in animal models and humans. However, an important limitation of the current approaches consists in their sole application to individual tissues, thus ignoring information shared across different tissues. To uncover complex genetic regulatory mechanisms controlling gene expression at the whole organism's level, it is essential to develop appropriate analytical methods for the analysis of genome-wide genetic polymorphisms and gene expression profiles simultaneously in multiple tissues. This paper presents a novel, fully integrated Bayesian approach for mapping the genetic components of gene expression within and across multiple tissues. In addition to increased power and enhanced mapping resolution when compared with traditional approaches, our model directly provides information on potential systemic effects on transcriptional profiles and co-existing local (cis) and distant (trans) genetic control of gene expression. We also discuss the possibility to extend our approach for the analysis of different phenotypes, and other study designs, thus providing an integrated computational tool to explore the genetic control underlying transcriptional regulation at the systems-level, beyond the single tissue resolution.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000737 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00737&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000737

DOI: 10.1371/journal.pcbi.1000737

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000737